Self-assembly of elastin-mimetic double hydrophobic polypeptides.
نویسندگان
چکیده
We have constructed a novel class of "double-hydrophobic" block polypeptides based on the hydrophobic domains found in native elastin, an extracellular matrix protein responsible for the elasticity and resilience of tissues. The block polypeptides comprise proline-rich poly(VPGXG) and glycine-rich poly(VGGVG), both of which dehydrate at higher temperature but form distinct secondary structures, β-turn and β-sheet respectively. In water at 45 °C, the block polypeptides initially assemble into nanoparticles rich in β-turn structures, which further connect into long (>10 μm), beaded nanofibers along with the increase in the β-sheet content. The nanofibers obtained are well-dispersed in water, and show thermoresponsive properties. Polypeptides comprising each block component assemble into different morphologies, showing that the conjugation of poly(VPGXG) and poly(VGGVG) plays a role for beaded fiber formation. These results may provide innovative ideas for designing peptide-based materials but also opportunities for developing novel materials useful for tissue engineering and drug delivery systems.
منابع مشابه
Proline periodicity modulates the self-assembly properties of elastin-like polypeptides.
Elastin is a self-assembling protein of the extracellular matrix that provides tissues with elastic extensibility and recoil. The monomeric precursor, tropoelastin, is highly hydrophobic yet remains substantially disordered and flexible in solution, due in large part to a high combined threshold of proline and glycine residues within hydrophobic sequences. In fact, proline-poor elastin-like seq...
متن کاملThe liquid structure of elastin
The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive ...
متن کاملNoncanonical Self-Assembly of Highly Asymmetric Genetically Encoded Polypeptide Amphiphiles into Cylindrical Micelles
Elastin-like polypeptides (ELPs) are a class of biopolymers consisting of the pentameric repeat (VPGαG)n based on the sequence of mammalian tropoelastin that display a thermally induced soluble-to-insoluble phase transition in aqueous solution. We have discovered a remarkably simple approach to driving the spontaneous self-assembly of high molecular weight ELPs into nanostructures by geneticall...
متن کاملSelf-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides
BACKGROUND Elastin-like polypeptides (ELPs) are a fascinating biomaterial that has undergone copious development for a variety of therapeutic applications including as a nanoscale drug delivery vehicle. A comprehensive understanding of ELP self-assembly is lacking and this knowledge gap impedes the advancement of ELP-based biomaterials into the clinical realm. The systematic examination of leuc...
متن کاملTransformation of amyloid-like fibers, formed from an elastin-based biopolymer, into a hydrogel: an X-ray photoelectron spectroscopy and atomic force microscopy study.
Previous studies have revealed the propensity of elastin-based biopolymers to form amyloid-like fibers when dissolved in water. These are of interest when considered as "ancestral units" of elastin in which they represent the simplest sequences in the hydrophobic regions of the general type XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu). We normally refer to these biopolymers based on elastin or related...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomacromolecules
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2013